
Flask-Shell2HTTP
Release 1.8.0

Eshaan Bansal

Oct 20, 2021

CONTENTS

1 Quickstart 3
1.1 Quick Start . 3
1.2 Examples . 4
1.3 Configuration . 5

2 API Reference 7
2.1 API Reference . 7

3 Indices and tables 9

Python Module Index 11

Index 13

i

ii

Flask-Shell2HTTP, Release 1.8.0

A minimalist Flask extension that serves as a RESTful/HTTP wrapper for python’s subprocess API.

• Convert any command-line tool into a REST API service.

• Execute shell commands asynchronously and safely via flask’s endpoints.

• Designed for binary to binary/HTTP communication, development, prototyping, remote control and more.

Use Cases:

• Set a script that runs on a succesful POST request to an endpoint of your choice.

• Map a base command to an endpoint and pass dynamic arguments to it.

• Can also process multiple uploaded files in one command.

• This is useful for internal docker-to-docker communications if you have different binaries distributed in micro-
containers.

• You can define a callback function/ use signals to listen for process completion.

• You can also apply View Decorators to the exposed endpoint.

• Currently, all commands run asynchronously (default timeout is 3600 seconds), so result is not available directly.
An option _may_ be provided for this in future release.

Note: This extension is primarily meant for executing long-running shell commands/scripts (like
nmap, code-analysis’ tools) in background from an HTTP request and getting the result at a later
time.

CONTENTS 1

https://github.com/pallets/flask

Flask-Shell2HTTP, Release 1.8.0

2 CONTENTS

CHAPTER

ONE

QUICKSTART

Get started at Quick Start. There are also more detailed Examples that shows different use-cases for this package.

1.1 Quick Start

1.1.1 Dependencies

• Python: >=v3.6

• Flask

• Flask-Executor

1.1.2 Installation

$ pip install flask flask_shell2http

1.1.3 Example Program

Create a file called app.py.

from flask import Flask
from flask_executor import Executor
from flask_shell2http import Shell2HTTP

Flask application instance
app = Flask(__name__)

executor = Executor(app)
shell2http = Shell2HTTP(app=app, executor=executor, base_url_prefix="/commands/")

def my_callback_fn(context, future):
optional user-defined callback function
print(context, future.result())

shell2http.register_command(endpoint="saythis", command_name="echo", callback_fn=my_
→˓callback_fn, decorators=[])

Run the application server with, $ flask run -p 4000.

With <10 lines of code, we succesfully mapped the shell command echo to the endpoint /commands/saythis.

3

https://pypi.org/project/Flask/
https://pypi.org/project/Flask-Executor

Flask-Shell2HTTP, Release 1.8.0

1.1.4 Making HTTP calls

This section demonstrates how we can now call/ execute commands over HTTP that we just mapped in the example
above.

$ curl -X POST -H 'Content-Type: application/json' -d '{"args": ["Hello", "World!"]}'
→˓http://localhost:4000/commands/saythis

You can also add a timeout if you want, default value is 3600 seconds
data = {"args": ["Hello", "World!"], "timeout": 60, "force_unique_key": False}
resp = requests.post("http://localhost:4000/commands/saythis", json=data)
print("Result:", resp.json())

returns JSON,

{
"key": "ddbe0a94",
"result_url": "http://localhost:4000/commands/saythis?key=ddbe0a94&wait=false",
"status": "running"

}

Then using this key you can query for the result or just by going to the result_url,

$ curl http://localhost:4000/commands/saythis?key=ddbe0a94&wait=true # wait=true so
→˓we don't need to poll

Returns result in JSON,

{
"report": "Hello World!\n",
"key": "ddbe0a94",
"start_time": 1593019807.7754705,
"end_time": 1593019807.782958,
"process_time": 0.00748753547668457,
"returncode": 0,
"error": null,

}

1.1.5 Bonus

You can also define callback functions or use signals for reactive programming. There may be cases where the process
doesn’t print result to standard output but to a file/database. In such cases, you may want to intercept the future object
and update it’s result attribute. I request you to take a look at Examples.md for such use-cases.

1.2 Examples

I have created some example python scripts to demonstrate various use-cases. These include extension setup as well
as making test HTTP calls with python’s requests module.

• run_script.py: Execute a script on a succesful POST request to an endpoint.

• basic.py: Map a base command to an endpoint and pass dynamic arguments to it. Can also pass in a timeout.

• multiple_files.py: Upload multiple files for a single command.

4 Chapter 1. Quickstart

https://requests.readthedocs.io/en/master/
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/run_script.py
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/basic.py
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/multiple_files.py

Flask-Shell2HTTP, Release 1.8.0

• with_callback.py: Define a callback function that executes on command/process completion.

• with_signals.py: Using Flask Signals as callback function.

• with_decorators.py: Shows how to apply View Decorators to the exposed endpoint. Useful in case you wish to
apply authentication, caching, etc. to the endpoint.

• custom_save_fn.py: There may be cases where the process doesn’t print result to standard output but to a
file/database. This example shows how to pass additional context to the callback function, intercept the future
object after completion and update it’s result attribute before it’s ready to be consumed.

1.3 Configuration

1.3.1 POST Request Options

One can read post-request-schema.json to see and understand the various optional tweaks which can be done when
making requests to the API.

There are many example programs with client requests given which demonstrate these different behaviours.

1.3.2 Logging Configuration

This extension logs messages of different severity INFO, DEBUG, ERROR using the python’s inbuilt logging module.

There are no default handlers or stream defined for the logger so it’s upto the user to define them.

Here’s a snippet of code that shows how you can access this extension’s logger object and add a custom handler to it.

python's inbuilt logging module
import logging
get the flask_shell2http logger
logger = logging.getLogger("flask_shell2http")
create new handler
handler = logging.StreamHandler(sys.stdout)
logger.addHandler(handler)
log messages of severity DEBUG or lower to the console
logger.setLevel(logging.DEBUG) # this is really important!

Please consult the Flask’s official docs on extension logs for more details.

1.3. Configuration 5

https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/with_callback.py
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/with_signals.py
https://flask.palletsprojects.com/en/1.1.x/signals/
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/with_decorators.py
https://flask.palletsprojects.com/en/1.1.x/patterns/viewdecorators/
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/examples/custom_save_fn.py
https://github.com/Eshaan7/Flask-Shell2HTTP/blob/master/post-request-schema.json
https://docs.python.org/3/library/logging.html
https://flask.palletsprojects.com/en/1.1.x/logging/#other-libraries

Flask-Shell2HTTP, Release 1.8.0

6 Chapter 1. Quickstart

CHAPTER

TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

class flask_shell2http.base_entrypoint.Shell2HTTP(app=None, executor:
flask_executor.executor.Executor =
None, base_url_prefix: str = '/')

Flask-Shell2HTTP base entrypoint class. The only public API available to users.

app
Flask application instance.

executor
Flask-Executor instance

base_url_prefix
base prefix to apply to endpoints. Defaults to “/”.

Type str

Example:

app = Flask(__name__)
executor = Executor(app)
shell2http = Shell2HTTP(app=app, executor=executor, base_url_prefix="/tasks/")

get_registered_commands()→ OrderedDict[str, str]
Most of the time you won’t need this since Flask provides a Flask.url_map attribute.

Returns OrderedDict[uri, command] i.e. mapping of registered commands and their URLs.

init_app(app, executor: flask_executor.executor.Executor)→ None
For use with Flask’s Application Factory method.

Example:

executor = Executor()
shell2http = Shell2HTTP(base_url_prefix="/commands/")
app = Flask(__name__)
executor.init_app(app)
shell2http.init_app(app=app, executor=executor)

7

https://flask.palletsprojects.com/en/1.1.x/patterns/appfactories/

Flask-Shell2HTTP, Release 1.8.0

register_command(endpoint: str, command_name: str, callback_fn: Callable[[Dict, concur-
rent.futures._base.Future], Any] = None, decorators: List = [])→ None

Function to map a shell command to an endpoint.

Parameters

• endpoint (str) –

– your command would live here: /{base_url_prefix}/{endpoint}

• command_name (str) –

– The base command which can be executed from the given endpoint.

– If command_name='echo', then all arguments passed to this endpoint will be ap-
pended to echo.

For example, if you pass { "args": ["Hello", "World"] } in POST re-
quest, it gets converted to echo Hello World.

• callback_fn (Callable[[Dict, Future], Any]) –

– An optional function that is invoked when a requested process to this endpoint
completes execution.

– This is added as a concurrent.Future.add_done_callback(fn=callback_fn)

– The same callback function may be used for multiple commands.

– if request JSON contains a callback_context attr, it will be passed as the first argument
to this function.

• decorators (List[Callable]) –

– A List of view decorators to apply to the endpoint.

– New in version v1.5.0

Examples:

def my_callback_fn(context: dict, future: Future) -> None:
print(future.result(), context)

shell2http.register_command(endpoint="echo", command_name="echo")
shell2http.register_command(

endpoint="myawesomescript",
command_name="./fuxsocy.py",
callback_fn=my_callback_fn,
decorators=[],

)

8 Chapter 2. API Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

9

Flask-Shell2HTTP, Release 1.8.0

10 Chapter 3. Indices and tables

PYTHON MODULE INDEX

f
flask_shell2http.base_entrypoint, 7

11

Flask-Shell2HTTP, Release 1.8.0

12 Python Module Index

INDEX

A
app (flask_shell2http.base_entrypoint.Shell2HTTP at-

tribute), 7

B
base_url_prefix (flask_shell2http.base_entrypoint.Shell2HTTP

attribute), 7

E
executor (flask_shell2http.base_entrypoint.Shell2HTTP

attribute), 7

F
flask_shell2http.base_entrypoint

module, 7

G
get_registered_commands()

(flask_shell2http.base_entrypoint.Shell2HTTP
method), 7

I
init_app() (flask_shell2http.base_entrypoint.Shell2HTTP

method), 7

M
module

flask_shell2http.base_entrypoint, 7

R
register_command()

(flask_shell2http.base_entrypoint.Shell2HTTP
method), 7

S
Shell2HTTP (class in

flask_shell2http.base_entrypoint), 7

13

	Quickstart
	Quick Start
	Examples
	Configuration

	API Reference
	API Reference

	Indices and tables
	Python Module Index
	Index

